123 research outputs found

    Scalable Realtime Rendering and Interaction with Digital Surface Models of Landscapes and Cities

    Get PDF
    Interactive, realistic rendering of landscapes and cities differs substantially from classical terrain rendering. Due to the sheer size and detail of the data which need to be processed, realtime rendering (i.e. more than 25 images per second) is only feasible with level of detail (LOD) models. Even the design and implementation of efficient, automatic LOD generation is ambitious for such out-of-core datasets considering the large number of scales that are covered in a single view and the necessity to maintain screen-space accuracy for realistic representation. Moreover, users want to interact with the model based on semantic information which needs to be linked to the LOD model. In this thesis I present LOD schemes for the efficient rendering of 2.5d digital surface models (DSMs) and 3d point-clouds, a method for the automatic derivation of city models from raw DSMs, and an approach allowing semantic interaction with complex LOD models. The hierarchical LOD model for digital surface models is based on a quadtree of precomputed, simplified triangle mesh approximations. The rendering of the proposed model is proved to allow real-time rendering of very large and complex models with pixel-accurate details. Moreover, the necessary preprocessing is scalable and fast. For 3d point clouds, I introduce an LOD scheme based on an octree of hybrid plane-polygon representations. For each LOD, the algorithm detects planar regions in an adequately subsampled point cloud and models them as textured rectangles. The rendering of the resulting hybrid model is an order of magnitude faster than comparable point-based LOD schemes. To automatically derive a city model from a DSM, I propose a constrained mesh simplification. Apart from the geometric distance between simplified and original model, it evaluates constraints based on detected planar structures and their mutual topological relations. The resulting models are much less complex than the original DSM but still represent the characteristic building structures faithfully. Finally, I present a method to combine semantic information with complex geometric models. My approach links the semantic entities to the geometric entities on-the-fly via coarser proxy geometries which carry the semantic information. Thus, semantic information can be layered on top of complex LOD models without an explicit attribution step. All findings are supported by experimental results which demonstrate the practical applicability and efficiency of the methods

    High (but Not Low) Urinary Iodine Excretion Is Predicted by Iodine Excretion Levels from Five Years Ago

    Get PDF
    Background: It has not been investigated whether there are associations between urinary iodine (UI) excretion measurements some years apart, nor whether such an association remains after adjustment for nutritional habits. The aim of the present study was to investigate the relation between iodine-creatinine ratio (ICR) at two measuring points 5 years apart. Methods: Data from 2,659 individuals from the Study of Health in Pomerania were analyzed. Analysis of covariance and Poisson regressions were used to associate baseline with follow-up ICR. Results: Baseline ICR was associated with follow-up ICR. Particularly, baseline ICR >300 mu g/g was related to an ICR >300 mu g/g at follow-up (relative risk, RR: 2.20; p < 0.001). The association was stronger in males (RR: 2.64; p < 0.001) than in females (RR: 1.64; p = 0.007). In contrast, baseline ICR <100 mu g/g was only associated with an ICR <100 mu g/g at follow-up in males when considering unadjusted ICR. Conclusions: We detected only a weak correlation with respect to low ICR. Studies assessing iodine status in a population should take into account that an individual with a low UI excretion in one measurement is not necessarily permanently iodine deficient. On the other hand, current high ICR could have been predicted by high ICR 5 years ago. Copyright (C) 2011 S. Karger AG, Base

    Ovulation is triggered by a cyclical modulation of gonadotropes into a hyperexcitable state

    Get PDF
    Gonadotropes in the anterior pituitary gland are essential for fertility and provide a functional link between the brain and the gonads. To trigger ovulation, gonadotrope cells release massive amounts of luteinizing hormone (LH). The mechanism underlying this remains unclear. Here, we utilize a mouse model expressing a genetically encoded Ca2+ indicator exclusively in gonadotropes to dissect this mechanism in intact pituitaries. We demonstrate that female gonadotropes exclusively exhibit a state of hyperexcitability during the LH surge, resulting in spontaneous [Ca2+]i transients in these cells, which persist in the absence of any in vivo hormonal signals. L-type Ca2+ channels and transient receptor potential channel A1 (TRPA1) together with intracellular reactive oxygen species (ROS) levels ensure this state of hyperexcitability. Consistent with this, virus-assisted triple knockout of Trpa1 and L-type Ca2+ subunits in gonadotropes leads to vaginal closure in cycling females. Our data provide insight into molecular mechanisms required for ovulation and reproductive success in mammals

    Nanofasern als neuartige Träger für flüchtige Signalstoffe zur biotechnischen Regulierung von Schadinsekten im integrierten und ökologischen Landbau

    Get PDF
    Using nanofibers as dispensers for pheromones and kairomones in plant protection for disrupting insect chemical communication is a novel approach aiming at popularizing this technique in organic and integrated plant production. Expected advantages of the nanofibers are highly controlled spatiotemporal release rates of pheromones / kairomones, improved climatic stability, and mechanized application. Dispenser types used so far show deficiencies in one or more of these requirements. Mechanical application of pheromones is a new approach to reduce the costs of manual labour and therefore the environmentally compatible, highly specific and efficient technique of mating disruption may become an alternative to the use of synthetic pesticides in integrated pest management. The nanofibers are highly elastic, which prevents breakoff of smaller pieces, and polymers used are biocompatible. Due to the scale of nanofibers the mass input both for pheromones and for polymeric nanofibers is very low. Major environmental benefits are high control specificity, very low concentrations of residues and reduced risk of development towards insect resistance

    Agonist-mediated switching of ion selectivity in TPC2 differentially promotes lysosomal function

    Get PDF
    Ion selectivity is a defining feature of a given ion channel and is considered immutable. Here we show that ion selectivity of the lysosomal ion channel TPC2, which is hotly debated (Calcraft et al., 2009;Guo et al., 2017;Jha et al., 2014;Ruas et al., 2015;Wang et al., 2012), depends on the activating ligand. A high-throughput screen identified two structurally distinct TPC2 agonists. One of these evoked robust Ca2+-signals and non-selective cation currents, the other weaker Ca2+-signals and Na+-selective currents. These properties were mirrored by the Ca2+ mobilizing messenger, NAADP and the phosphoinositide, PI(3,5)P-2, respectively. Agonist action was differentially inhibited by mutation of a single TPC2 residue and coupled to opposing changes in lysosomal pH and exocytosis. Our findings resolve conflicting reports on the permeability and gating properties of TPC2 and they establish a new paradigm whereby a single ion channel mediates distinct, functionally-relevant ionic signatures on demand

    Surface softening in metal-ceramic sliding contacts: An experimental and numerical investigation

    Get PDF
    This study investigates the tribolayer properties at the interface of ceramic/metal (i.e., WC/W) sliding contacts using various experimental approaches and classical atomistic simulations. Experimentally, nanoindentation and micropillar compression tests, as well as adhesion mapping by means of atomic force microscopy, are used to evaluate the strength of tungsten?carbon tribolayers. To capture the influence of environmental conditions, a detailed chemical and structural analysis is performed on the worn surfaces by means of XPS mapping and depth profiling along with transmission electron microscopy of the debris particles. Experimentally, the results indicate a decrease in hardness and modulus of the worn surface compared to the unworn one. Atomistic simulations of nanoindentation on deformed and undeformed specimens are used to probe the strength of the WC tribolayer and despite the fact that the simulations do not include oxygen, the simulations correlate well with the experiments on deformed and undeformed surfaces, where the difference in behavior is attributed to the bonding and structural differences of amorphous and crystalline W-C. Adhesion mapping indicates a decrease in surface adhesion, which based on chemical analysis is attributed to surface passivation

    Joint EANM, SNMMI, and IAEA Enabling Guide: How to Set up a Theranostics Center.

    Full text link
    peer reviewedThe theranostics concept using the same target for both imaging and therapy dates back to the middle of the last century, when radioactive iodine was first used to treat thyroid diseases. Since then, radioiodine has become broadly established clinically for diagnostic imaging and therapy of benign and malignant thyroid disease, worldwide. However, only since the approval of SSTR2-targeting theranostics following the NETTER-1 trial in neuroendocrine tumors, and the positive outcome of the VISION trial has theranostics gained substantial attention beyond nuclear medicine. The roll-out of radioligand therapy for treating a high-incidence tumor such as prostate cancer requires the expansion of existing and the establishment of new theranostics centers. Despite wide global variation in the regulatory, financial and medical landscapes, this guide attempts to provide valuable information to enable interested stakeholders to safely initiate and operate theranostic centers. This enabling guide does not intend to answer all possible questions, but rather to serve as an overarching framework for multiple, more detailed future initiatives. It recognizes that there are regional differences in the specifics of regulation of radiation safety, but common elements of best practice valid globally

    Is increased time to diagnosis and treatment in symptomatic cancer associated with poorer outcomes?:Systematic review

    Get PDF
    background: It is unclear whether more timely cancer diagnosis brings favourable outcomes, with much of the previous evidence, in some cancers, being equivocal. We set out to determine whether there is an association between time to diagnosis, treatment and clinical outcomes, across all cancers for symptomatic presentations. methods: Systematic review of the literature and narrative synthesis. results: We included 177 articles reporting 209 studies. These studies varied in study design, the time intervals assessed and the outcomes reported. Study quality was variable, with a small number of higher-quality studies. Heterogeneity precluded definitive findings. The cancers with more reports of an association between shorter times to diagnosis and more favourable outcomes were breast, colorectal, head and neck, testicular and melanoma. conclusions: This is the first review encompassing many cancer types, and we have demonstrated those cancers in which more evidence of an association between shorter times to diagnosis and more favourable outcomes exists, and where it is lacking. We believe that it is reasonable to assume that efforts to expedite the diagnosis of symptomatic cancer are likely to have benefits for patients in terms of improved survival, earlier-stage diagnosis and improved quality of life, although these benefits vary between cancers

    Review of Kaon Physics at CERN and in Europe

    Get PDF
    The Kaon physics program at CERN and in Europe will be presented. I will first give a short review of recent results form the NA48/2 and NA62 experiments, with special emphasis to the measurement of RK , the ratio of Kaon leptonic decays rates, K → eν and K → μν, using the full minimum bias data sample collected in 2007-2008. The main subject of the talk will be the study of the highly suppressed decay K → πνν. While its rate can be predicted with minimal theoretical uncertainty in the Standard Model (BR ∼ 8 × 10−11), the smallness of BR and the challenging experimental signature make it very difficult to measure. The branching ratio for this decay is thus a sensitive probe of the flavour sector of the SM. The aim of NA62 is the measurement of the K → πνν BR with ∼ 10% precision in two years of data taking. This will require the observation of 10K decays in the experiment's fiducial volume, as well as the use of high-performance systems for precision tracking, particle identification, and photon vetoing. These aspects of the experiment will also allow NA62 to carry out a rich program of searches for lepton flavour and/or number violating K decays. Data taking will start in October 2014. The physics prospects and the status of the construction and commissioning of the NA62 experiment will be presented. In the last part of the talk I will report on Kaon physics results and prospects from other experiments at CERN (e.g. LHCb) and in Europe (e.g. KLOE and KLOE-2) and briefly mention the status in US
    • …
    corecore